For each of the categories below, rank each member of the category on a scale of 1-7, where 1 means that the item is a ‘very good example’ of that category, and 7 means that the item is a ‘poor example’ of that category.
txt <- element_text(size = 18, family = "Avenir", color = "black")
txt.x.rot <- element_text(size = 14, family = "Avenir", color = "black", angle = 45, vjust = 0.5)
txt.y.rot <- element_text(size = 14, family = "Avenir", color = "black", angle = 0)
theme_set(
theme_classic() +
theme(legend.position = "none",
text = txt,
axis.text.x = txt.x.rot,
axis.text.y = txt.y.rot)
)
path.data <- file.path("~", "Downloads", "mia4_submissions.csv")
df.semantic <- path.data %>%
read_csv(show_col_types = FALSE) %>%
select(-Timestamp, -`Email Address`, -Name, -`SUNet ID`) %>%
pivot_longer(everything()) %>%
separate(name, c("type", "instance")) %>%
mutate(value = 8 - value) # reverse score the ratings
set.seed(100)
df.semantic %>%
ggplot(mapping = aes(x = reorder(instance, value),
y = value,
color = type)) +
geom_jitter(width = 0.2,
height = 0.1,
alpha = 0.3) +
stat_summary(fun.data = mean_cl_boot,
color = "black") +
labs(title = "Category \"goodness\" ranking task",
subtitle = paste0("Psych 45 - Spring 2024 (N = ", path.data %>% read_csv(show_col_types = FALSE) %>% pull(`SUNet ID`) %>% unique %>% length, ")"),
x = "",
y = "\"Goodness\" as example of class") +
facet_wrap(~type,
scales = "free_x")